Search results
Results from the WOW.Com Content Network
The transverse temporal gyrus, also called Heschl's gyrus (/ ˈ h ɛ ʃ əl z ˈ dʒ aɪ r aɪ /) or Heschl's convolutions, is a gyrus found in the area of each primary auditory cortex buried within the lateral sulcus of the human brain, occupying Brodmann areas 41 and 42.
The auditosensory cortex is the part of the auditory system that is associated with the sense of hearing in humans. It occupies the bilateral primary auditory cortex in the temporal lobe of the mammalian brain. [1] The term is used to describe Brodmann areas 41 and 42 together with the transverse temporal gyrus. [2]
Coronal section of a human brain. BA41(red) and BA42(green) are auditory cortex. BA22(yellow) is Brodmann area 22, HF(blue) is hippocampal formation and pSTG is posterior part of superior temporal gyrus. The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates.
This is the incredible Kay Pike. Using only body paint and paint brushes, the ever so talented Kay can magically transform herself into any superhero or villain in the (comic) book.
The superior temporal gyrus also includes Wernicke's area, which (in most people) is located in the left hemisphere. It is the major area involved in the comprehension of language. The superior temporal gyrus is involved in auditory processing, including language, but also has been implicated as a critical structure in social cognition. [2] [3]
Both pathways project in humans to the inferior frontal gyrus. The most established role of the auditory dorsal stream in primates is sound localization. In humans, the auditory dorsal stream in the left hemisphere is also responsible for speech repetition and articulation, phonological long-term encoding of word names, and verbal working memory.
The accuracy of tempo within an auditory image usually suffers when recalled; however, the consistency of a person's perception of tempo is preserved. When surveying subject's auditory imagery, their sense of tempo usually stays within 8% of the original tempo heard in a song that the subject heard at some point in the past. [1]
Deaf humans are thought to have a larger ratio of gray matter to white matter in certain auditory cortices, such as left and right Heschl's gyrus and Superior Temporal gyrus. [11] This heightened ratio is thought to exist due to less overall white matter in Heschl's gyrus and the Superior Temoral gyrus among deaf humans.