Search results
Results from the WOW.Com Content Network
Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6]
Add the following into the article's bibliography * {{Lee Introduction to Smooth Manifolds|edition=2}} and then add a citation by using the markup
Introduction to Smooth manifolds. Springer Graduate Texts in Mathematics. Vol. 218. ISBN 0-387-95448-1. Lee, J. M. (1997). Riemannian Manifolds – An Introduction to Curvature. Springer Graduate Texts in Mathematics. Vol. 176. Springer Verlag. ISBN 978-0-387-98322-6. Vaz, Jayme; da Rocha, Roldão (2016). An Introduction to Clifford Algebras ...
Pages for logged out editors ... (Top) 1 Usage. 2 Citations. 3 References. Toggle the table of contents. Template: Lee Introduction to Smooth Manifolds/doc. Add ...
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.
The occasion of the proof by Hassler Whitney of the embedding theorem for smooth manifolds is said (rather surprisingly) to have been the first complete exposition of the manifold concept precisely because it brought together and unified the differing concepts of manifolds at the time: no longer was there any confusion as to whether abstract ...
Lee, John M. (2003). Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).