enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction with the pattern as a numerator, and the same number of nines as a denominator. For example: 0. 5 = 5/9 0. 62 = 62/99 0. 264 = 264/999 0. 6291 = 6291/9999

  3. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    To determine the actual value, a decimal point is placed after the first digit of the significand and the result is multiplied by 10 5 to give 1.528535047 × 10 5, or 152,853.5047. In storing such a number, the base (10) need not be stored, since it will be the same for the entire range of supported numbers, and can thus be inferred.

  5. Decimal separator - Wikipedia

    en.wikipedia.org/wiki/Decimal_separator

    In English and many other languages (including many that are written right-to-left), the integer part is at the left of the radix point, and the fraction part at the right of it. [24] A radix point is most often used in decimal (base 10) notation, when it is more commonly called the decimal point (the prefix deci-implying base 10).

  6. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and ...

  7. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  8. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.

  9. Fractional part - Wikipedia

    en.wikipedia.org/wiki/Fractional_part

    The fractional part or decimal part [1] of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x , called floor of x or ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } .