Search results
Results from the WOW.Com Content Network
Until 1982, STP was defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 101.325 kPa (1 atm). Since 1982, STP is defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of 100 kPa (1 bar). Conversions between each volume flow metric are calculated using the following formulas: Prior to 1982,
The relationship between the two constants is R s = R / m, where m is the molecular mass of the gas. The US Standard Atmosphere (USSA) uses 8.31432 m 3 ·Pa/(mol·K) as the value of R. However, the USSA in 1976 does recognize that this value is not consistent with the values of the Avogadro constant and the Boltzmann constant. [49]
where p is the absolute pressure of the gas, n is the number density of the molecules (given by the ratio n = N/V, in contrast to the previous formulation in which n is the number of moles), T is the absolute temperature, and k B is the Boltzmann constant relating temperature and energy, given by: =
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
At standard temperature and pressure (100 kPa and 273.15 K), we can use Avogadro's law to find the molar volume of an ideal gas: V m = V n = R T P ≈ 8.3145 J m o l ⋅ K × 273.15 K 100 k P a ≈ 22.711 L / m o l {\displaystyle V_{\text{m}}={\frac {V}{n}}={\frac {RT}{P}}\approx {\frac {\mathrm {8.3145\ {\frac {J}{mol\cdot K}}\times 273.15\ K ...