Search results
Results from the WOW.Com Content Network
Python supports a wide variety of string operations. Strings in Python are immutable, so a string operation such as a substitution of characters, that in other programming languages might alter the string in place, returns a new string in Python. Performance considerations sometimes push for using special techniques in programs that modify ...
This leads to duplicating some functionality. For example: List comprehensions vs. for-loops; Conditional expressions vs. if blocks; The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the former is for expressions, the latter is for statements
In object-oriented languages, string functions are often implemented as properties and methods of string objects. In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions.
Local variables, instance variables, and class variables are also written in lowerCamelCase. Variable names should not start with underscore (_) or dollar sign ($) characters, even though both are allowed. This is in contrast to other coding conventions that state that underscores should be used to prefix all instance variables.
In a dynamically typed language, where type can only be determined at runtime, many type errors can only be detected at runtime. For example, the Python code a + b is syntactically valid at the phrase level, but the correctness of the types of a and b can only be determined at runtime, as variables do not have types in Python, only values do.
A method is a behavior of an object parametrized by a user. Data is represented as properties of the object, and behaviors are represented as methods. For example, a Window object could have methods such as open and close, while its state (whether it is open or closed at any given point in time) would be a property.
This is particularly used in fluent interfaces, which feature many method calls on a single object. This is particularly useful if the object is the value of a lengthy expression, as it eliminates the need to either list the expression repeatedly or use a temporary variable. For example, instead of either listing an expression repeatedly:
Some languages allow variable shadowing in more cases than others. For example Kotlin allows an inner variable in a function to shadow a passed argument and a variable in an inner block to shadow another in an outer block, while Java does not allow these. Both languages allow a passed argument to a function/Method to shadow a Class Field. [1]