Search results
Results from the WOW.Com Content Network
Zinc finger nucleases have also been used in a mouse model of haemophilia [31] and a clinical trial found CD4+ human T-cells with the CCR5 gene disrupted by zinc finger nucleases to be safe as a potential treatment for HIV/AIDS. [32] ZFNs are also used to create a new generation of genetic disease models called isogenic human disease models.
In the early 2000s, German researchers began developing zinc finger nucleases (ZFNs), synthetic proteins whose DNA-binding domains enable them to create double-stranded breaks in DNA at specific points. ZFNs have a higher precision and the advantage of being smaller than Cas9, but ZFNs are not as commonly used as CRISPR-based methods.
However they can control where these edits will occur (i.e. dictate the target site) through using a site-specific nuclease (previously Zinc Finger Nucleases & TALENs, now commonly CRISPR) to break the DNA at the target site. A summary of gene-targeting through HDR (also called Homologous Recombination) and targeted mutagenesis through NHEJ is ...
The restriction enzymes can be introduced into cells, for use in gene editing or for genome editing in situ, a technique known as genome editing with engineered nucleases. Alongside zinc finger nucleases and CRISPR/Cas9, TALEN is a prominent tool in the field of genome editing.
In addition, zinc fingers have become extremely useful in various therapeutic and research capacities. Engineering zinc fingers to have an affinity for a specific sequence is an area of active research, and zinc finger nucleases and zinc finger transcription factors are two of the most important applications of this to be realized to date.
Examples of gene editing are CRISPR, zinc finger nuclease, transcription activator-like effector nuclease (TALEN), oligonucleotide directed mutagenesis + meganucleases. Genome editing, a type of genetic engineering; Gene therapy, the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease
Zinc finger protein transcription factors can be encoded by genes small enough to fit a number of such genes into a single vector, allowing the medical intervention and control of expression of multiple genes and the initiation of an elaborate cascade of events. In this respect, it is also possible to target a sequence that is common to ...
A number of genome editing technologies have emerged in recent years, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases and the RNA-guided CRISPR/Cas9 nuclease system. These methods promote genome editing by introduction of a double strand DNA break, followed by repair through the non-homologous end-joining ...