enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    NMR is extensively used in medicine in the form of magnetic resonance imaging. NMR is widely used in organic chemistry and industrially mainly for analysis of chemicals. The technique is also used to measure the ratio between water and fat in foods, monitor the flow of corrosive fluids in pipes, or to study molecular structures such as ...

  3. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  4. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    The peak at the center is the ZPD position ("zero path difference"): Here, all the light passes through the interferometer because its two arms have equal length. The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry.

  5. Bruker Introduces New Benchtop FT-NMR System FOURIERâ„¢ 60 - AOL

    www.aol.com/news/2013-09-09-bruker-introduces...

    Moreover, this ensures full compatibility between routine and research instruments in academic research and industrial settings, as NMR samples and data are fully compatible.

  6. Fourier-transform infrared spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_infrared...

    Fourier transform (FT) inverts the dimension, so the FT of the interferogram belongs in the reciprocal length dimension([L −1]), that is the dimension of wavenumber. The spectral resolution in cm −1 is equal to the reciprocal of the maximal retardation in cm.

  7. Spectral line shape - Wikipedia

    en.wikipedia.org/wiki/Spectral_line_shape

    Since, in FT-NMR, the measurements are made in the time domain division of the data by an exponential is equivalent to deconvolution in the frequency domain. A suitable choice of exponential results in a reduction of the half-width of a line in the frequency domain. This technique has been rendered all but obsolete by advances in NMR technology ...

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    While 1D NMR is more straightforward and ideal for identifying basic structural features, COSY enhances the capabilities of NMR by providing deeper insights into molecular connectivity. The two-dimensional spectrum that results from the COSY experiment shows the frequencies for a single isotope, most commonly hydrogen (1 H) along both axes.

  9. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    The coupling constants then differ because of geometry (cis vs. trans) or connectivity (2-bond vs. 3-bond) and the level of complexity will depend on the differences. Conformational dynamics may reduce or even obliterate the difference between cis and trans couplings, if fast compared to the NMR timescale. There may also be additional couplings ...