Search results
Results from the WOW.Com Content Network
Jacksum on SourceForge, a Java implementation of all three revisions of Whirlpool; whirlpool on GitHub – An open source Go implementation of the latest revision of Whirlpool; A Matlab Implementation of the Whirlpool Hashing Function; RHash, an open source command-line tool, which can calculate and verify Whirlpool hash. Perl Whirlpool module ...
The bcrypt password hashing function requires a larger amount of RAM (but still not tunable separately, i.e. fixed for a given amount of CPU time) and is significantly stronger against such attacks, [12] while the more modern scrypt key derivation function can use arbitrarily large amounts of memory and is therefore more resistant to ASIC and ...
For example, bcrypt cannot be used to derive a 512-bit key from a password. At the same time, algorithms like pbkdf2, scrypt, and argon2 are password-based key derivation functions - where the output is then used for the purpose of password hashing rather than just key derivation. Password hashing generally needs to complete < 1000 ms.
Common graphics processing units can try billions of possible passwords each second. Password hash functions that perform key stretching – such as PBKDF2, scrypt or Argon2 – commonly use repeated invocations of a cryptographic hash to increase the time (and in some cases computer memory) required to perform brute-force attacks on stored ...
Linear hashing and spiral hashing are examples of dynamic hash functions that execute in constant time but relax the property of uniformity to achieve the minimal movement property. Extendible hashing uses a dynamic hash function that requires space proportional to n to compute the hash function, and it becomes a function of the previous keys ...
Rainbow tables are a practical example of a space–time tradeoff: they use less computer processing time and more storage than a brute-force attack which calculates a hash on every attempt, but more processing time and less storage than a simple table that stores the hash of every possible password.
The salt and hash are then stored in the database. To later test if a password a user enters is correct, the same process can be performed on it (appending that user's salt to the password and calculating the resultant hash): if the result does not match the stored hash, it could not have been the correct password that was entered.
Keeper for password hashing. [5] LastPass for password hashing. [6] [7] 1Password for password hashing. [8] Enpass for password hashing. [9] Dashlane for password hashing. [10] [11] Bitwarden for password hashing. [12] Apple's iOS mobile operating system, for protecting user passcodes and passwords. [13] Mac OS X Mountain Lion for user ...