Search results
Results from the WOW.Com Content Network
In chemistry, an ionic crystal is a crystalline form of an ionic compound. They are solids consisting of ions bound together by their electrostatic attraction into a regular lattice . Examples of such crystals are the alkali halides , including potassium fluoride (KF), potassium chloride (KCl), potassium bromide (KBr), potassium iodide (KI ...
This defect mobility is the source of most transport phenomena within an ionic crystal, including diffusion and solid state ionic conductivity. [54] When vacancies collide with interstitials (Frenkel), they can recombine and annihilate one another.
Ionic compounds lose their crystal lattice structure and break up into ions when dissolved in water or any other polar solvent. This process is called solvation. This process is called solvation. The presence of these free ions makes aqueous ionic compound solutions good conductors of electricity.
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice .
The scientific definition of a "crystal" is based on the microscopic arrangement of atoms inside it, called the crystal structure. A crystal is a solid where the atoms form a periodic arrangement. (Quasicrystals are an exception, see below). Not all solids are crystals.
Sodium chloride crystal lattice. The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt and sphalerite where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction
Ionic bonding is a kind of chemical bonding that arises from the mutual attraction of oppositely charged ions. Ions of like charge repel each other, and ions of opposite charge attract each other. Therefore, ions do not usually exist on their own, but will bind with ions of opposite charge to form a crystal lattice.
There occur as many Madelung constants M i in a crystal structure as ions occupy different lattice sites. For example, for the ionic crystal NaCl, there arise two Madelung constants – one for Na and another for Cl. Since both ions, however, occupy lattice sites of the same symmetry they both are of the same magnitude and differ only by sign.