Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
In differential geometry, the use of dimensionless parameters is evident in geometric relationships and transformations. Physics relies on dimensionless numbers like the Reynolds number in fluid dynamics, [6] the fine-structure constant in quantum mechanics, [7] and the Lorentz factor in relativity. [8]
Listed below are all conversion factors that are useful to convert between all combinations of the SI base units, and if not possible, between them and their unique elements, because ampere is a dimensionless ratio of two lengths such as [C/s], and candela (1/683 [W/sr]) is a dimensionless ratio of two dimensionless ratios such as ratio of two volumes [kg⋅m 2 /s 3] = [W] and ratio of two ...
As such, the fine-structure constant is just a quantity determining (or determined by) the elementary charge: e = √ 4πα ≈ 0.302 822 12 in terms of such a natural unit of charge. In the system of atomic units , which sets e = m e = ħ = 4 πε 0 = 1 , the expression for the fine-structure constant becomes α = 1 c . {\displaystyle \alpha ...
In differential geometry, the use of dimensionless parameters is evident in geometric relationships and transformations. Physics relies on dimensionless numbers like the Reynolds number in fluid dynamics, [7] the fine-structure constant in quantum mechanics, [8] and the Lorentz factor in relativity. [9]
These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).
For example, if "x" represented mass, the letter "m" might be an appropriate symbol to represent the dimensionless mass quantity. In this article, the following conventions have been used: t – represents the independent variable – usually a time quantity.
The original Standard Model of particle physics from the 1970s contained 19 fundamental dimensionless constants describing the masses of the particles and the strengths of the electroweak and strong forces. In the 1990s, neutrinos were discovered to have nonzero mass, and a quantity called the vacuum angle was found to be indistinguishable from ...