Search results
Results from the WOW.Com Content Network
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Some statistical tests, such as the analysis of variance, assume that variances are equal across groups or samples, which can be checked with Bartlett's test. In a Bartlett test, we construct the null and alternative hypothesis. For this purpose several test procedures have been devised.
Analysis of Variance (ANOVA) is a data analysis technique for examining the significance of the factors (independent variables) in a multi-factor model. The one factor model can be thought of as a generalization of the two sample t-test. That is, the two sample t-test is a test of the hypothesis that two population means are equal.
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.
Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
A p-value less than 0.05 for one or more of these three hypotheses leads to their rejection. As with many other non-parametric methods, the analysis in this method relies on the evaluation of the ranks of the samples in the samples rather than the actual observations. Modifications also allow extending the test to examine more than two factors.
The image above depicts a visual comparison between multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA). In MANOVA, researchers are examining the group differences of a singular independent variable across multiple outcome variables, whereas in an ANOVA, researchers are examining the group differences of sometimes multiple independent variables on a singular ...