Search results
Results from the WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
Quantity disagreement is the absolute value of the mean error: [4] | = |. Allocation disagreement is MAE minus quantity disagreement. It is also possible to identify the types of difference by looking at an ( x , y ) {\displaystyle (x,y)} plot.
The squared loss has the disadvantage that it has the tendency to be dominated by outliers—when summing over a set of 's (as in = ()), the final sum tends to be the result of a few particularly large a-values, rather than an expression of the average a-value. The choice of a loss function is not arbitrary.
If the model is correctly specified, it can be shown under mild assumptions that the expected value of the MSE for the training set is (n − p − 1)/(n + p + 1) < 1 times the expected value of the MSE for the validation set (the expected value is taken over the distribution of training sets).
where is the instance, [] the expectation value, is a class into which an instance is classified, (|) is the conditional probability of label for instance , and () is the 0–1 loss function: L ( x , y ) = 1 − δ x , y = { 0 if x = y 1 if x ≠ y {\displaystyle L(x,y)=1-\delta _{x,y}={\begin{cases}0&{\text{if }}x=y\\1&{\text{if }}x\neq y\end ...
A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.