Search results
Results from the WOW.Com Content Network
The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a ...
In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...
This result is known as the Shannon–Hartley theorem. [ 11 ] When the SNR is large (SNR ≫ 0 dB), the capacity C ≈ W log 2 P ¯ N 0 W {\displaystyle C\approx W\log _{2}{\frac {\bar {P}}{N_{0}W}}} is logarithmic in power and approximately linear in bandwidth.
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:
“The thing that has impressed me with this team is that they don’t get down,” Chiefs head coach Andy Reid said Monday. “That’s not what they are.
For another, both Shannon’s and Fano’s coding schemes are similar in the sense that they both are efficient, but suboptimal prefix-free coding schemes with a similar performance. Shannon's (1948) method, using predefined word lengths, is called Shannon–Fano coding by Cover and Thomas, [ 4 ] Goldie and Pinch, [ 5 ] Jones and Jones, [ 6 ...