Search results
Results from the WOW.Com Content Network
According to data from the Pioneer Venus Orbiter altimeters, nearly 51% of the surface is located within 500 meters (1,600 feet) of the median radius of 6,052 km (3,761 mi); only 2% of the surface is located at elevations greater than 2 kilometres (1.2 mi) from the median radius.
They make up a small area on Venus's global surface of around 7.2 x 10 8 km 2. [13] The lineament is the pattern of deformation, which make it a typical structural–material unit. [13] There is evidence showing the embayment of tessera by pdl's material in some tessera margins. Thus, it is possible that this unit is younger than the tessera ...
Diagram of Venus' 1:5,000,000 map quadrangles. Name Number Latitude Longitude Snegurochika Planitia V-1 75-90° N 0-360° E Fortuna Tessera V-2 50-75° N 0-60° E
The ionosphere of Venus consists of three layers: v1 between 120 and 130 km, v2 between 140 and 160 km and v3 between 200 and 250 km. [28] There may be an additional layer near 180 km. The maximum electron volume density (number of electrons in a unit of volume) of 3 × 10 11 m −3 is reached in the v2 layer near the subsolar point . [ 28 ]
Studies have proven that Venus needed liquid water three billion years ago to be able to have such high concentrations of water-related minerals and gases on its surface and in its atmosphere today. However, such studies proved that the liquids would only have lasted up until 700 million to 750 million years ago, before eventually evaporating ...
Equirectangular projection of the world; the standard parallel is the equator (plate carrée projection). Equirectangular projection with Tissot's indicatrix of deformation and with the standard parallels lying on the equator True-colour satellite image of Earth in equirectangular projection Height map of planet Earth at 2km per pixel, including oceanic bathymetry information, normalized as 8 ...
The current Venusian atmosphere has only ~200 mg/kg H 2 O(g) in its atmosphere and the pressure and temperature regime makes water unstable on its surface. Nevertheless, assuming that early Venus's H 2 O had a ratio between deuterium (heavy hydrogen, 2H) and hydrogen (1H) similar to Earth's Vienna Standard Mean Ocean Water of 1.6×10 −4, [7] the current D/H ratio in the Venusian atmosphere ...
The surface of Venus is dominated by geologic features that include volcanoes, large impact craters, and aeolian erosion and sedimentation landforms. Venus has a topography reflecting its single, strong crustal plate, with a unimodal elevation distribution (over 90% of the surface lies within an elevation of -1.0 and 2.5 km) [1] that preserves geologic structures for long periods of time.