enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit. The test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only ...

  3. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  4. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A famous example of an application of this test is the alternating harmonic series = + = + +, which is convergent per the alternating series test (and its sum is equal to ⁡), though the series formed by taking the absolute value of each term is the ordinary harmonic series, which is divergent.

  6. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.

  7. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  8. I traveled to 50 of the top countries for tourism and ranked ...

    www.aol.com/traveled-50-top-countries-tourism...

    1. Spain. I highly recommend visiting Mallorca. engel.ac/Shutterstock. Surprisingly, it wasn't difficult for me to select my No. 1 country — Spain has always been near and dear to my heart.

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]