Search results
Results from the WOW.Com Content Network
A motor requiring a DC power supply for operation is termed a DC motor. DC motors are widely used in control applications like robotics, tape drives, machines and many more. Separately excited DC motors are suitable for control applications because of separate field and armature circuit. [1] Two ways to control DC separately excited motors are ...
A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.
A DC armature of a miniature motor (or generator) An example of a triple-T armature A partially-constructed DC armature, showing the (incomplete) windings. In electrical engineering, the armature is the winding (or set of windings) of an electric machine which carries alternating current. [1]
A DC motor's speed and torque characteristics vary according to three different magnetization sources, separately excited field, self-excited field or permanent-field, which are used selectively to control the motor over the mechanical load's range. Self-excited field motors can be series, shunt, or a compound wound connected to the armature.
A compensation winding in a DC shunt motor is a winding in the field pole face plate that carries armature current to reduce stator field distortion.Its purpose is to reduce brush arcing and erosion in DC motors that are operated with weak fields, variable heavy loads or reversing operation such as steel-mill motors.
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.
The field coils can be mounted on either the rotor or the stator, depending on whichever method is the most cost-effective for the device design. In a brushed DC motor the field is static but the armature current must be commutated, so as to continually rotate
is the torque produced divided by armature current. [10] It can be calculated from the motor velocity constant . = = = where is the armature current of the machine (SI unit: ampere).