enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram equalization - Wikipedia

    en.wikipedia.org/wiki/Histogram_equalization

    Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images. There are two ways to think about and implement histogram equalization, either as image change or as palette change.

  3. Adaptive histogram equalization - Wikipedia

    en.wikipedia.org/.../Adaptive_histogram_equalization

    Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.

  4. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]

  5. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    6 different real multiple choice-based exams (735 answer sheets and 33,540 answer boxes) to evaluate computer vision techniques and systems developed for multiple choice test assessment systems. None 735 answer sheets and 33,540 answer boxes Images and .mat file labels Development of multiple choice test assessment systems 2017 [204] [205]

  6. Image histogram - Wikipedia

    en.wikipedia.org/wiki/Image_histogram

    Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...

  7. Digital image processing - Wikipedia

    en.wikipedia.org/wiki/Digital_image_processing

    For example, noise problem can be solved by smoothing method while gray level distribution problem can be improved by histogram equalization. Smoothing method In drawing, if there is some dissatisfied color, taking some color around dissatisfied color and averaging them.

  8. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [ 11 ] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index.

  9. Normalization (image processing) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(image...

    Applications include photographs with poor contrast due to glare, for example. Normalization is sometimes called contrast stretching or histogram stretching. In more general fields of data processing, such as digital signal processing, it is referred to as dynamic range expansion. [1]