Search results
Results from the WOW.Com Content Network
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
List of orders of magnitude for molar concentration; Factor (Molarity) SI prefix Value Item 10 −24: yM 1.66 yM: 1 elementary entity per litre [1]: 8.5 yM: airborne bacteria in the upper troposphere (5100/m 3) [2]
By accounting for the self-ionization of water, the true pH of the solution can be calculated. For example, a 5×10 −8 M solution of HCl would have a pH of 6.89 when treated as a mixture of HCl and water. The self-ionization equilibrium of solutions of sodium hydroxide at higher concentrations must also be considered.
This complicates the calculation of the standard uncertainty in the molar mass. A useful convention for normal laboratory work is to quote molar masses to two decimal places for all calculations. This is more accurate than is usually required, but avoids rounding errors during calculations. When the molar mass is greater than 1000 g/mol, it is ...
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
An acid-base indicator such as bromophenol blue is added to make visible the boundary between the acidic HCl solution and the near-neutral CdCl 2 solution. [8] The boundary tends to remain sharp since the leading solution HCl has a higher conductivity that the indicator solution CdCl 2 , and therefore a lower electric field to carry the same ...
where and are activities of HCl solutions of right and left hand electrodes, respectively, and is the transport number of Cl −. Liquid junction potential is the difference between the two EMFs of the two concentration cells, with and without ionic transport: