Search results
Results from the WOW.Com Content Network
The converse may or may not be true, and even if true, the proof may be difficult. For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context.
In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
The statement formed by reversing the antecedent and consequent of a conditional statement, not necessarily maintaining logical equivalence. converse domain In set theory and logic, the set of all elements that are related to any element of a given set under a specific relation. [72] converse barcan formula
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
Computational logic is the branch of logic and computer science that studies how to implement mathematical reasoning and logical formalisms using computers. This includes, for example, automatic theorem provers , which employ rules of inference to construct a proof step by step from a set of premises to the intended conclusion without human ...
where the rule is that wherever an instance of "()" appears on a line of a proof, it can be replaced with "()", and vice versa. Import-export is a name given to the statement as a theorem or truth-functional tautology of propositional logic: