Search results
Results from the WOW.Com Content Network
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
Granted that the loop variable's value is defined after the termination of the loop, then the above statement will find the first non-positive element in array A (and if no such, its value will be N + 1), or, with suitable variations, the first non-blank character in a string, and so on.
In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10]. In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact sum. (sum,c) = Fast2Sum(sum,y) // Next time around, the lost low part will be added to y in a fresh attempt. next i return sum
Whenever the sum of the current element in the first array and the current element in the second array is more than T, the algorithm moves to the next element in the first array. If it is less than T, the algorithm moves to the next element in the second array. If two elements that sum to T are found, it stops. (The sub-problem for two elements ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In the following, the abbreviation x = def x 1, ... x n; subscripts may be applied if the meaning requires. #A: A function φ definable explicitly from functions Ψ and constants q 1, ... q n is primitive recursive in Ψ. #B: The finite sum Σ y<z ψ(x, y) and product Π y<z ψ(x, y) are primitive recursive in ψ.