enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  3. Comparison of programming languages (list comprehension)

    en.wikipedia.org/wiki/Comparison_of_programming...

    List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.

  4. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  5. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  6. OCaml - Wikipedia

    en.wikipedia.org/wiki/OCaml

    A variety of libraries are directly accessible from OCaml. For example, OCaml has a built-in library for arbitrary-precision arithmetic. As the factorial function grows very rapidly, it quickly overflows machine-precision numbers (typically 32- or 64-bits). Thus, factorial is a suitable candidate for arbitrary-precision arithmetic.

  7. Caml - Wikipedia

    en.wikipedia.org/wiki/Caml

    The 1D Haar wavelet transform of an integer-power-of-two-length list of numbers can be implemented very succinctly in Caml and is an excellent example of the use of pattern matching over lists, taking pairs of elements (h1 and h2) off the front and storing their sums and differences on the lists s and d, respectively:

  8. Kempner function - Wikipedia

    en.wikipedia.org/wiki/Kempner_function

    In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...

  9. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    For example, in the factorial function, properly the base case is 0! = 1, while immediately returning 1 for 1! is a short circuit, and may miss 0; this can be mitigated by a wrapper function. The box shows C code to shortcut factorial cases 0 and 1.