Search results
Results from the WOW.Com Content Network
The USB-IF used WiGig Serial Extension v1.2 specification as its initial foundation for the MA-USB specification and is compliant with SuperSpeed USB (3.0 and 3.1) and Hi-Speed USB (USB 2.0). Devices that use MA-USB will be branded as "Powered by MA-USB", provided the product qualifies its certification program.
A number of extensions to the USB Specifications have progressively further increased the maximum allowable V_BUS voltage: starting with 6.0 V with USB BC 1.2, [42] to 21.5 V with USB PD 2.0 [43] and 50.9 V with USB PD 3.1, [43] while still maintaining backwards compatibility with USB 2.0 by requiring various forms of handshake before ...
High-Speed Inter-Chip (HSIC) is a chip-to-chip variant of USB 2.0 that eliminates the conventional analog transceivers found in normal USB. It was adopted as a standard by the USB-IF in 2007. The HSIC physical layer uses about 50% less power and 75% less board area compared to traditional USB 2.0. HSIC uses two signals at 1.2 V and has a ...
USB 1.x/2.0 Mini/Micro pinout Pin Name Cable color Description 1 VBUS Red +5 V 2 D− White Data − 3 D+ Green Data + 4 ID None Permits distinction of host connection from slave connection
The written USB 3.0 specification was released by Intel and its partners in August 2008. The first USB 3.0 controller chips were sampled by NEC in May 2009, [4] and the first products using the USB 3.0 specification arrived in January 2010. [5] USB 3.0 connectors are generally backward compatible, but include new wiring and full-duplex operation.
The USB mass storage device class (also known as USB MSC or UMS) is a set of computing communications protocols, specifically a USB Device Class, defined by the USB Implementers Forum that makes a USB device accessible to a host computing device and enables file transfers between the host and the USB device. To a host, the USB device acts as an ...
USB 3.0 SuperSpeed and USB 2.0 High-Speed versions defined USB 3.0 SuperSpeed – host controller (xHCI) hardware support, no software overhead for out-of-order commands; USB 2.0 High-speed – enables command queuing in USB 2.0 drives; Streams were added to the USB 3.0 SuperSpeed protocol for supporting UAS out-of-order completions
IEEE P1823 was a proposed global standard for a universal power adapter for mobile devices (UPAMD) that require between 10 W and 240 W. E.g., Laptops, larger tablets and other mobile devices that can require much more power than the (non-Power Delivery) USB battery charging specification limit of 7.5 W at 5 V. [25]