enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's function number - Wikipedia

    en.wikipedia.org/wiki/Green's_function_number

    As an example in the cylindrical coordinate system, number R03 denotes the Green's function that satisfies the heat equation in the solid cylinder (0 < r < a) with a boundary condition of type 3 (Robin) at r = a.

  3. Cylindrical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_coordinate_system

    Cylindrical coordinates are useful in connection with objects and phenomena that have some rotational symmetry about the longitudinal axis, such as water flow in a straight pipe with round cross-section, heat distribution in a metal cylinder, electromagnetic fields produced by an electric current in a long, straight wire, accretion disks in ...

  4. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  5. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δ f ( p ) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f ( p ) .

  6. Bessel function - Wikipedia

    en.wikipedia.org/wiki/Bessel_function

    Bessel functions for integer are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer α {\displaystyle \alpha } are obtained when solving the Helmholtz equation in spherical coordinates .

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    Expressing the Navier–Stokes vector equation in Cartesian coordinates is quite straightforward and not much influenced by the number of dimensions of the euclidean space employed, and this is the case also for the first-order terms (like the variation and convection ones) also in non-cartesian orthogonal coordinate systems.

  8. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  9. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...