Search results
Results from the WOW.Com Content Network
The probability density, cumulative distribution, and inverse cumulative distribution functions of a generalized chi-squared variable do not have simple closed-form expressions. But there exist several methods to compute them numerically: Ruben's method, [7] Imhof's method, [8] IFFT method, [6] ray method, [6] and ellipse approximation. [6]
The quantile function can be found by noting that (;,,) = ((/)) where is the cumulative distribution function of the gamma distribution with parameters = / and =. The quantile function is then given by inverting F {\displaystyle F} using known relations about inverse of composite functions , yielding:
In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions.It is often used to model the tails of another distribution. It is specified by three parameters: location , scale , and shape
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
The Type IV generalized logistic, or logistic-beta distribution, with support and shape parameters , >, has (as shown above) the probability density function (pdf):
The two generalized normal families described here, like the skew normal family, are parametric families that extends the normal distribution by adding a shape parameter. Due to the central role of the normal distribution in probability and statistics, many distributions can be characterized in terms of their relationship to the normal ...
In statistics, a generalized additive model (GAM) is a generalized linear model in which the linear response variable depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions.
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.