Search results
Results from the WOW.Com Content Network
Myostatin is a myokine that is produced and released by myocytes and acts on muscle cells to inhibit muscle growth. [7] Myostatin is a secreted growth differentiation factor that is a member of the TGF beta protein family. [8] [9] Myostatin is assembled and produced in skeletal muscle before it is released into the blood stream. [10]
Heart muscle is subject to two kinds of stress: physiologic stress, i.e. exercise; and pathologic stress, i.e. disease related. Likewise, the heart has two potential responses to either stress: cardiac hypertrophy, which is a normal, physiologic, adaptive growth; or cardiac remodeling, which is an abnormal, pathologic, maladaptive growth. Upon ...
Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones.
The hypothalamic–pituitary–somatotropic axis (HPS axis), or hypothalamic–pituitary–somatic axis, also known as the hypothalamic–pituitary–growth axis, is a hypothalamic–pituitary axis which includes the secretion of growth hormone (GH; somatotropin) from the somatotropes of the pituitary gland into the circulation and the subsequent stimulation of insulin-like growth factor 1 ...
Genes for human growth hormone, known as growth hormone 1 (somatotropin; pituitary growth hormone) and growth hormone 2 (placental growth hormone; growth hormone variant), are localized in the q22-24 region of chromosome 17 [7] [8] and are closely related to human chorionic somatomammotropin (also known as placental lactogen) genes.
Migration of cardiac precursor cells and fusion of the primordia: The cardiac precursor cells migrate anteriorly towards the midline and fuse into a single heart tube. Fibronectin in the extracellular matrix directs this migration. If this migration event is blocked, cardia bifida results where the two heart primordia remain separated. During ...
Adult zebrafish have a remarkable ability to completely regenerate cardiac muscle after injury. [7] There are similar genes in zebrafish and humans that control the development of the heart [ 8 ] and the phenomenal ability of zebrafish cardiomyocytes to proliferate in response to injury has made it a popular research model .
It is a key mediator of anabolic activities in numerous tissues and cells, such as growth hormone-stimulated growth, metabolism and protein translation. [17] Due to its participation in the GH-IGF-1 axis it contributes among other things to the maintenance of muscle strength, muscle mass, development of the skeleton and is a key factor in brain ...