Search results
Results from the WOW.Com Content Network
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).
The Young–Laplace equation is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: [2] [1] = where: is the interfacial tension is the effective radius of the interface is the wetting angle of the liquid on the surface of the capillary
The liquid entry pressure (LEP) of a hydrophobic membrane is the pressure that must be applied to a dry membrane so that the liquid penetrates inside the membrane. LEP with the application in membrane distillation or pervaporation can be calculated as a first parameter to indicate how wettable a membrane is toward different liquid solutions.
The contact angle is defined as the angle formed by the intersection of the liquid-solid interface and the liquid–vapour interface. [2] The size of the angle quantifies the wettability of liquid, i.e., the interaction between the liquid and solid surface. A contact angle of = can be considered, perfect wetting.
Capillary flow porometry permits obtaining several parameters and information in one individual and fast measurement. In general, a measurement with the wet sample (impregnated with wetting liquid) is carried out first. It is normally known as the "wet run" and the representation of the gas flow vs. the applied pressure is the so-called "wet ...
The opposite process—spreading of a liquid on a substrate—is called wetting. The factor determining the spontaneous spreading and dewetting for a drop of liquid placed on a solid substrate with ambient gas, is the so-called spreading coefficient S: Surface tension diagram of a liquid droplet on a solid substrate.
The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two immiscible liquids.