Search results
Results from the WOW.Com Content Network
The earliest extant Chinese illustration of 'Pascal's triangle' is from Yang's book Xiángjiě Jiǔzhāng Suànfǎ (詳解九章算法) [1] of 1261 AD, in which Yang acknowledged that his method of finding square roots and cubic roots using "Yang Hui's Triangle" was invented by mathematician Jia Xian [2] who expounded it around 1100 AD, about 500 years before Pascal.
Sallows is an expert on the theory of magic squares [1] and has invented several variations on them, including alphamagic squares [2] [3] and geomagic squares. [4] The latter invention caught the attention of mathematician Peter Cameron who has said that he believes that "an even deeper structure may lie hidden beyond geomagic squares" [5]
Bernard Frénicle de Bessy (c. 1604 – 1674), was a French mathematician born in Paris, who wrote numerous mathematical papers, mainly in number theory and combinatorics.He is best remembered for Des quarrez ou tables magiques, a treatise on magic squares published posthumously in 1693, in which he described all 880 essentially different normal magic squares of order 4.
His book is an encyclopaedic hotch-potch of ideas which contains everything from A to Z relating to the Chinese mystique of numbers (magic squares, ... generation of the eight trigrams, musical tubes), how computation should be taught and studied, the meaning of technical arithmetical terms, computation on the abacus with its tables which must ...
Bordered magic square when it is a magic square and it remains magic when the rows and columns on the outer edge are removed. They are also called concentric bordered magic squares if removing a border of a square successively gives another smaller bordered magic square. Bordered magic square do not exist for order 4.
A magic circle can be derived from one or more magic squares by putting a number at each intersection of a circle and a spoke. Additional spokes can be added by replicating the columns of the magic square. In the example in the figure, the following 4 × 4 most-perfect magic square was copied into the upper part of the magic circle. Each number ...
Al-Kishnawi studied at the Gobarau Minaret in Katsina before leaving for Cairo, Egypt in 1732, where he published in Arabic a work titled, "A Treatise on the Magical Use of the Letters of the Alphabet" which is a mathematical scholarly manuscript of procedures for constructing magic squares up to the order 11. [3]
Early records dated to 650 BCE are ambiguous, referring to a "river map", but clearly start to refer to a magic square by 80 CE, and explicitly give an example of one since 570 CE. [2] [3] Recent publications have provided support that the Lo Shu Magic Square was an important model for time and space.