enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    The fundamental region is a shape such as a rectangle that is repeated to form the tessellation. [22] For example, a regular tessellation of the plane with squares has a meeting of four squares at every vertex. [18] The sides of the polygons are not necessarily identical to the edges of the tiles.

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  5. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    An example is the sphinx tiling, an aperiodic tiling formed by a pentagonal rep-tile. [20] The sphinx may also tile the plane periodically, by fitting two sphinx tiles together to form a parallelogram and then tiling the plane by translation of this parallelogram, [ 20 ] a pattern that can be extended to any non-convex pentagon that has two ...

  6. Triangular tiling - Wikipedia

    en.wikipedia.org/wiki/Triangular_tiling

    In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees.

  7. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  8. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The trapezo-rhombic dodecahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It consists of copies of a single cell, the trapezo-rhombic dodecahedron . It is similar to the higher symmetric rhombic dodecahedral honeycomb which has all 12 faces as rhombi.

  9. Rep-tile - Wikipedia

    en.wikipedia.org/wiki/Rep-tile

    Such a shape necessarily forms the prototile for a tiling of the plane, in many cases an aperiodic tiling. A rep-tile dissection using different sizes of the original shape is called an irregular rep-tile or irreptile. If the dissection uses n copies, the shape is said to be irrep-n. If all these sub-tiles are of different sizes then the tiling ...