Search results
Results from the WOW.Com Content Network
For a point mass on a weightless string of length L swinging with an infinitesimally small amplitude, without resistance, the length of the string of a seconds pendulum is equal to L = g/ π 2 where g is the acceleration due to gravity, with units of length per second squared, and L is the length of the string in the same units.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.
Pendulums were so universally used to measure gravity that, in Kater's time, the local strength of gravity was usually expressed not by the value of the acceleration g now used, but by the length at that location of the seconds pendulum, a pendulum with a period of two seconds, so each swing takes one second. It can be seen from equation (1 ...
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
These curves correspond to the pendulum swinging periodically from side to side. If < then the curve is open, and this corresponds to the pendulum forever swinging through complete circles. In this system the separatrix is the curve that corresponds to =. It separates — hence the name — the phase space into two distinct areas, each with a ...
The seconds pendulum, a pendulum with a period of two seconds so each swing takes one second. The seconds pendulum, a pendulum with a period of two seconds so each swing takes one second, was widely used to measure gravity, because its period could be easily measured by comparing it to precision regulator clocks, which all had seconds pendulums ...
The same point is called the center of oscillation for the object suspended from the pivot as a pendulum, meaning that a simple pendulum with all its mass concentrated at that point will have the same period of oscillation as the compound pendulum.
This equation resembles the simple nonlinear pendulum equation, because it can swing through the vertical axis, with an additional term to account for the rotation about the vertical axis (the constant a is related to the angular momentum p φ). Applying the Lagrangian approach there are two nonlinear coupled equations to solve. The θ equation is