Search results
Results from the WOW.Com Content Network
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
A discharge is a measure of the quantity of any fluid flow over unit time. The quantity may be either volume or mass. Thus the water discharge of a tap (faucet) can be measured with a measuring jug and a stopwatch. Here the discharge might be 1 litre per 15 seconds, equivalent to 67 ml/second or 4 litres/minute. This is an average measure.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.
If G represents stage for discharge Q, then the relationship between G and Q can possibly be approximated with an equation: Q = C r ( G − a ) β {\displaystyle Q=C_{r}(G-a)^{\beta }} where C r {\displaystyle C_{r}} and β {\displaystyle \beta } are rating curve constants, and a {\displaystyle a} is a constant which represents the gauge ...
The discharge potential is a potential in groundwater mechanics which links the physical properties, hydraulic head, with a mathematical formulation for the energy as a function of position. The discharge potential, Φ {\textstyle \Phi } [L 3 ·T −1 ], is defined in such way that its gradient equals the discharge vector.
The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V. Solving for Q then allows an estimate of the volumetric flow rate (discharge) without knowing the limiting or actual flow velocity. The formula can be obtained by use of dimensional analysis.
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.