enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleotide sugar - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_sugar

    Cytidine Monophosphate: CMP-β-D-Neu5Ac; in humans, it is the only nucleotide sugar in the form of nucleotide monophosphate. Cytidine Diphosphate: CDP-D-Ribitol (i.e. CMP-[ribitol phosphate]); [8] though not a sugar, the phosphorylated sugar alcohol ribitol phosphate is incorporated into matriglycan as if it were a monosaccharide.

  3. Nucleotide sugars metabolism - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_sugars_metabolism

    In nucleotide sugar metabolism a group of biochemicals known as nucleotide sugars act as donors for sugar residues in the glycosylation reactions that produce polysaccharides. [1] They are substrates for glycosyltransferases. [2] The nucleotide sugars are also intermediates in nucleotide sugar interconversions that produce some of the activated ...

  4. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    The two sides adjacent to the sugar-linked vertex are referred to, respectively, as the Sugar and Hoogsteen (C-H for pyrimidines) edges. Each of the four different nucleobases are characterized by distinct edge-specific distribution patterns of their respective hydrogen bond donor and acceptor atoms, complementarity with which, in turn, define ...

  5. Nucleic acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_metabolism

    Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides.

  6. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...

  7. Glycosyltransferase - Wikipedia

    en.wikipedia.org/wiki/Glycosyltransferase

    Most glycosyltransferase enzymes form one of two folds: GT-A or GT-B. Glycosyltransferases (GTFs, Gtfs) are enzymes that establish natural glycosidic linkages.They catalyze the transfer of saccharide moieties from an activated nucleotide sugar (also known as the "glycosyl donor") to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur ...

  8. Uridine diphosphate glucose - Wikipedia

    en.wikipedia.org/wiki/Uridine_diphosphate_glucose

    UDP-glucose is used in nucleotide sugar metabolism as an activated form of glucose, a substrate for enzymes called glucosyltransferases. [1]UDP-glucose is a precursor of glycogen and can be converted into UDP-galactose and UDP-glucuronic acid, which can then be used as substrates by the enzymes that make polysaccharides containing galactose and glucuronic acid.

  9. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing (adenine and thymine, guanine and cytosine) occurs naturally when hydrogen bonds form between the nucleotide bases.