enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of valid argument forms - Wikipedia

    en.wikipedia.org/wiki/List_of_valid_argument_forms

    In Disjunctive Syllogism, the first premise establishes two options. The second takes one away, so the conclusion states that the remaining one must be true. [3] It is shown below in logical form. Either A or B Not A Therefore B. When A and B are replaced with real life examples it looks like below.

  3. Syllogism - Wikipedia

    en.wikipedia.org/wiki/Syllogism

    Each premise and the conclusion can be of type A, E, I or O, and the syllogism can be any of the four figures. A syllogism can be described briefly by giving the letters for the premises and conclusion followed by the number for the figure. For example, the syllogism BARBARA below is AAA-1, or "A-A-A in the first figure".

  4. Validity (logic) - Wikipedia

    en.wikipedia.org/wiki/Validity_(logic)

    An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism: All men are mortal. (True) Socrates is a man. (True) Therefore, Socrates is mortal. (True) What makes this a valid argument is not that it has true premises and a true conclusion.

  5. Hypothetical syllogism - Wikipedia

    en.wikipedia.org/wiki/Hypothetical_syllogism

    A pure hypothetical syllogism is a syllogism in which both premises and the conclusion are all conditional statements. The antecedent of one premise must match the consequent of the other for the conditional to be valid. Consequently, conditionals contain remained antecedent as antecedent and remained consequent as consequent. If P, then Q.

  6. Negative conclusion from affirmative premises - Wikipedia

    en.wikipedia.org/wiki/Negative_conclusion_from...

    The rule states that a syllogism in which both premises are of form a or i (affirmative) cannot reach a conclusion of form e or o (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)

  7. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T. The column-8 operator (AND), shows Simplification rule: when p∧q=T (first line of the table), we see that p=T. With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15.

  8. Glossary of logic - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_logic

    A syllogism with three premises leading to a contradiction, showing the inconsistency of the premises. [14] [15] [16] antinomy A contradiction between two beliefs or conclusions that are in themselves reasonable; a paradox. antisymmetry

  9. Fallacy of four terms - Wikipedia

    en.wikipedia.org/wiki/Fallacy_of_four_terms

    Sometimes a syllogism that is apparently fallacious because it is stated with more than three terms can be translated into an equivalent, valid three term syllogism. [2] For example: Major premise: No humans are immortal. Minor premise: All Greeks are people. Conclusion: All Greeks are mortal.