enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  3. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    When working with graphs that are too large to store explicitly (or infinite), it is more practical to describe the complexity of breadth-first search in different terms: to find the nodes that are at distance d from the start node (measured in number of edge traversals), BFS takes O(b d + 1) time and memory, where b is the "branching factor ...

  4. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    The problem of graph exploration can be seen as a variant of graph traversal. It is an online problem, meaning that the information about the graph is only revealed during the runtime of the algorithm. A common model is as follows: given a connected graph G = (V, E) with non-negative edge weights. The algorithm starts at some vertex, and knows ...

  6. Wavefront expansion algorithm - Wikipedia

    en.wikipedia.org/wiki/Wavefront_expansion_algorithm

    A sampling-based planner works by searching the graph. In the case of path planning, the graph contains the spatial nodes which can be observed by the robot. The wavefront expansion increases the performance of the search by analyzing only nodes near the robot. The decision is made on a geometrical level which is equal to breadth-first search. [5]

  7. Lexicographic breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Lexicographic_breadth...

    The algorithm is called lexicographic breadth-first search because the order it produces is an ordering that could also have been produced by a breadth-first search, and because if the ordering is used to index the rows and columns of an adjacency matrix of a graph then the algorithm sorts the rows and columns into lexicographical order.

  8. Tarjan's strongly connected components algorithm - Wikipedia

    en.wikipedia.org/wiki/Tarjan's_strongly_connected...

    The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found). As usual with depth-first search, the search visits every node of the graph exactly once, refusing to revisit any node that has already been visited.

  9. Dinic's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dinic's_algorithm

    Even and Itai also contributed to this algorithm by combining BFS and DFS, which is how the algorithm is now commonly presented. [ 2 ] For about 10 years of time after the Ford–Fulkerson algorithm was invented, it was unknown if it could be made to terminate in polynomial time in the general case of irrational edge capacities.