Search results
Results from the WOW.Com Content Network
a programming language and an interpreter (the result of a computation commonly has an unpredictable form and an unpredictable size; therefore user intervention is frequently needed), a simplifier, which is a rewrite system for simplifying mathematics formulas,
The polar form of the product of two complex numbers is obtained by multiplying the absolute values and adding the arguments. It follows that the polar form of an n th root of a complex number can be obtained by taking the n th root of the absolute value and dividing its argument by n:
In number theory, the Calkin–Wilf tree is a tree in which the vertices correspond one-to-one to the positive rational numbers.The tree is rooted at the number 1, and any rational number q expressed in simplest terms as the fraction a / b has as its two children the numbers 1 / 1+1/q = a / a + b and q + 1 = a + b / b .
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
Note that if n 2 is the closest perfect square to the desired square x and d = x - n 2 is their difference, it is more convenient to express this approximation in the form of mixed fraction as . Thus, in the previous example, the square root of 15 is 4 − 1 8 . {\displaystyle 4{\tfrac {-1}{8}}.}
A rewriting system has the unique normal form property (UN) if for all normal forms a, b ∈ S, a can be reached from b by a series of rewrites and inverse rewrites only if a is equal to b. A rewriting system has the unique normal form property with respect to reduction (UN →) if for every term reducing to normal forms a and b, a is equal to ...
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .
The associated bilinear form of a quadratic form q is defined by (,) = ((+) ()) = =. Thus, b q is a symmetric bilinear form over K with matrix A . Conversely, any symmetric bilinear form b defines a quadratic form q ( x ) = b ( x , x ) , {\displaystyle q(x)=b(x,x),} and these two processes are the inverses of each other.