Search results
Results from the WOW.Com Content Network
Every polynomial with rational coefficients, may be factorized, in a unique way, as the product of a rational number and a polynomial with integer coefficients, which is primitive (that is, the greatest common divisor of the coefficients is 1), and has a positive leading coefficient (coefficient of the term of the highest degree). For example:
The Heaviside cover-up method, named after Oliver Heaviside, is a technique for quickly determining the coefficients when performing the partial-fraction expansion of a rational function in the case of linear factors. [1] [2] [3] [4]
For univariate polynomials with complex coefficients, factorization can easily be reduced to numerical computation of polynomial roots and multiplicities. In the multivariate case, a random infinitesimal perturbation of the coefficients produces with probability one an irreducible polynomial, even when starting from a polynomial with many factors.
However, for rational coefficients, two aspects have to be taken care of: The output may involve huge integers which may make the computation and the use of the result problematic. To deduce the numeric values of the solutions from the output, one has to solve univariate polynomials with approximate coefficients, which is a highly unstable problem.
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
A similar problem, involving equating like terms rather than coefficients of like terms, arises if we wish to de-nest the nested radicals + to obtain an equivalent expression not involving a square root of an expression itself involving a square root, we can postulate the existence of rational parameters d, e such that
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...