enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  3. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Since there is acceleration only in the vertical direction, the velocity in the horizontal direction is constant, being equal to ⁡. The vertical motion of the projectile is the motion of a particle during its free fall. Here the acceleration is constant, being equal to g.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  5. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    v is the velocity at which the projectile is launched g is the gravitational acceleration —usually taken to be 9.81 m/s 2 (32 f/s 2 ) near the Earth's surface θ is the angle at which the projectile is launched

  6. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  7. Omega equation - Wikipedia

    en.wikipedia.org/wiki/Omega_equation

    The omega equation is a culminating result in synoptic-scale meteorology.It is an elliptic partial differential equation, named because its left-hand side produces an estimate of vertical velocity, customarily [1] expressed by symbol , in a pressure coordinate measuring height the atmosphere.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  9. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is: