Search results
Results from the WOW.Com Content Network
A change in concentration over a distance is called a concentration gradient, a change in pressure over a distance is called a pressure gradient, and a change in temperature over a distance is called a temperature gradient. The word diffusion derives from the Latin word, diffundere, which means "to spread out".
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.
The former mechanism describes diffusion as the motion of the diffusing atoms between interstitial sites in the lattice of the solid it is diffusing into, the latter describes diffusion through a mechanism more analogue to that in liquids or gases: Any crystal at nonzero temperature will have a certain number of vacancy defects (i.e. empty ...
The Kirkendall effect is the motion of the interface between two metals that occurs due to the difference in diffusion rates of the metal atoms. The effect can be observed, for example, by placing insoluble markers at the interface between a pure metal and an alloy containing that metal, and heating to a temperature where atomic diffusion is reasonable for the given timescale; the boundary ...
Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.
Beyond this distance, the diffusioosmotic velocity does not vary with distance from the surface. The driving force for diffusioosmosis is thermodynamic, i.e., it acts to reduce the free energy if the system, and so the direction of flow is away from surface regions of low surface free energy, and towards regions of high surface free energy.
Tunneling diffusion is a physical manifestation of the quantum tunneling effect involving particles tunneling across diffusion barriers. It can occur in the case of low diffusing particle mass and low E diff , and has been observed in the case of hydrogen diffusion on tungsten and copper surfaces. [ 16 ]