enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  3. Jeremiah J. Callahan - Wikipedia

    en.wikipedia.org/wiki/Jeremiah_J._Callahan

    Callahan was an academic who studied Euclidean geometry. The first volume of his book Euclid or Einstein? A Proof of the Parallel Theory and a Critique of Metageometry claimed to have proved Euclid's fifth "parallel" postulate, by re-ordering the logical structure of Euclid's Elements. Callahan proved that for any point not on a given line ...

  4. Posidonius - Wikipedia

    en.wikipedia.org/wiki/Posidonius

    Posidonius was one of the first to attempt to prove Euclid's fifth postulate of geometry. He suggested changing the definition of parallel straight lines to an equivalent statement that would allow him to prove the fifth postulate. From there, Euclidean geometry could be restructured, placing the fifth postulate among the theorems instead. [38]

  5. Giovanni Girolamo Saccheri - Wikipedia

    en.wikipedia.org/wiki/Giovanni_Girolamo_Saccheri

    The first led to the conclusion that straight lines are finite, contradicting Euclid's second postulate. So Saccheri correctly rejected it. However, the principle is now accepted as the basis of elliptic geometry, where both the second and fifth postulates are rejected. The second possibility turned out to be harder to refute.

  6. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The very old problem of proving Euclid's Fifth Postulate, the "Parallel Postulate", from his first four postulates had never been forgotten. Beginning not long after Euclid, many attempted demonstrations were given, but all were later found to be faulty, through allowing into the reasoning some principle which itself had not been proved from ...

  7. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    In Book I, Euclid lists five postulates, the fifth of which stipulates If a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.

  8. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence. [18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence.

  9. Nikolai Lobachevsky - Wikipedia

    en.wikipedia.org/wiki/Nikolai_Lobachevsky

    Before him, mathematicians were trying to deduce Euclid's fifth postulate from other axioms. Euclid's fifth is a rule in Euclidean geometry which states (in John Playfair's reformulation) that for any given line and point not on the line, there is only one line through the point not intersecting the given line. Lobachevsky would instead develop ...