Search results
Results from the WOW.Com Content Network
Gamma double prime (γ"): This phase typically is Ni 3 Nb or Ni 3 V and is used to strengthen Ni-based superalloys at lower temperatures (<650 °C) relative to γ'. The crystal structure of γ" is body-centered tetragonal (BCT), and the phase precipitates as 60 nm by 10 nm discs with the (001) planes in γ" parallel to the {001} family in γ.
In these alloys the volume fraction of the γ' precipitates is as high as 80%. [7] Because of this high volume fraction, the evolution of these γ' precipitates during the alloys' life cycles is important: a major concern is the coarsening of these γ' precipitates at high temperature (800 to 1000 °C), which greatly reduces the alloys ...
In age-hardening or precipitation-strengthening varieties, small amounts of niobium combine with nickel to form the intermetallic compound Ni 3 Nb or gamma double prime (γ″). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures. The formation of gamma-prime crystals increases over time ...
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel.
Ostwald ripening is also the key process in the digestion and aging of precipitates, an important step in gravimetric analysis. The digested precipitate is generally purer, and easier to wash and filter. Ostwald ripening can also occur in emulsion systems, with molecules diffusing from small droplets to large ones through the continuous phase.
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
The current theoretical model of the atom involves a dense nucleus surrounded by a probabilistic "cloud" of electrons. Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries.