Search results
Results from the WOW.Com Content Network
The temperature of the deep ocean drops gradually with depth. As saline water does not freeze until it reaches −2.3 °C (27.9 °F) (colder as depth and pressure increase) the temperature well below the surface is usually not far from zero degrees. [2] The thermocline varies in depth.
It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km (2 to 5 °F/1000 ft), as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place (see below). It can be highly variable ...
Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline (or metalimnion), the middle layer, whose depth may change throughout the day; and the colder hypolimnion, extending to the floor of the lake.
The difference is that the density increases with depth, whereas the salinity and temperature decrease with depth. The halo-, thermo-, and pycnocline at 10E, 30S. For this image the annual means of the year 2000 from the GODAS Data [4] has been used. In the ocean, a specific range of temperature and salinity occurs.
When this water reaches the North Atlantic, it cools and sinks through convection, due to its decreased temperature and increased salinity resulting in increased density. NADW is the outflow of this thick deep layer, which can be detected by its high salinity, high oxygen content, nutrient minima, high 14 C/ 12 C, [ 1 ] and chlorofluorocarbons ...
Over time, the field of temperatures inside the bar reaches a new steady-state, in which a constant temperature gradient along the bar is finally set up, and this gradient then stays constant in time. Typically, such a new steady-state gradient is approached exponentially with time after a new temperature-or-heat source or sink, has been ...