enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  4. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2] That given point is the center of the sphere, and r is the sphere's radius.

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    The two-dimensional analogue of the Poincaré conjecture says that any two-dimensional topological manifold which is closed and connected but non-homeomorphic to the two-dimensional sphere must possess a loop which cannot be continuously contracted to a point. (This is illustrated by the example of the torus, as above.)

  8. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.

  9. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    This is the set of points in 3-dimensional Euclidean space found exactly one unit away from the origin. It is called the 2-sphere, S 2, for reasons given below. The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1 ...