Search results
Results from the WOW.Com Content Network
Oxidative phosphorylation in the eukaryotic mitochondrion is the best-understood example of this process. The mitochondrion is present in almost all eukaryotes, with the exception of anaerobic protozoa such as Trichomonas vaginalis that instead reduce protons to hydrogen in a remnant mitochondrion called a hydrogenosome .
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
For instance, the electron transport chain and oxidative phosphorylation all take place in the mitochondrial membrane. [4]: 73, 74 & 109 In contrast, glycolysis, pentose phosphate pathway, and fatty acid biosynthesis all occur in the cytosol of a cell. [5]: 441–442
The ten-step catabolic pathway of glycolysis is the initial phase of free-energy release in the breakdown of glucose and can be split into two phases, the preparatory phase and payoff phase. ADP and phosphate are needed as precursors to synthesize ATP in the payoff reactions of the TCA cycle and oxidative phosphorylation mechanism. [4]
The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
Free oxygen is produced in the biosphere through photolysis (light-driven oxidation and splitting) of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.
There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of five-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the cytosol; in plants, most steps take place in plastids. [4]