Search results
Results from the WOW.Com Content Network
1×10 −1: multiplication of two 10-digit numbers by a 1940s electromechanical desk calculator [1] 3×10 −1: multiplication on Zuse Z3 and Z4, first programmable digital computers, 1941 and 1945 respectively; 5×10 −1: computing power of the average human mental calculation [clarification needed] for multiplication using pen and paper
The gap between processor speed and main memory speed has grown exponentially. Until 2001–05, CPU speed, as measured by clock frequency, grew annually by 55%, whereas memory speed only grew by 7%. [1] This problem is known as the memory wall. The motivation for a cache and its hierarchy is to bridge this speed gap and overcome the memory wall.
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
System designers building parallel computers, such as Google's hardware, pick CPUs based on their performance per watt of power, because the cost of powering the CPU outweighs the cost of the CPU itself. [2] Spaceflight computers have hard limits on the maximum power available and also have hard requirements on minimum real-time performance.
Processor Series nomenclature Code name Production date Features supported (instruction set) Clock rate Socket Fabri-cation TDP Cores (number) Bus speed Cache L1 Cache L2 Cache L3 Overclock capable 4004: N/A N/A 1971 - Nov 15 [clarification needed] N/A 740 kHz DIP 10-micron 2 N/A N/A N/A 8008: N/A N/A 1972 - April good [clarification needed] N ...
As a very approximate guide, the BogoMips can be pre-calculated by the following table. The given rating is typical for that CPU with the then current and applicable Linux version. The index is the ratio of "BogoMips per clock speed" for any CPU to the same for an Intel 386DX CPU, for comparison purposes. [6] [7]
In early processors, the TSC was a cycle counter, incrementing by 1 for each clock cycle (which could cause its rate to vary on processors that could change clock speed at runtime) – in later processors, it increments at a fixed rate that doesn't necessarily match the CPU clock speed.
There are many ways in which the resources used by an algorithm can be measured: the two most common measures are speed and memory usage; other measures could include transmission speed, temporary disk usage, long-term disk usage, power consumption, total cost of ownership, response time to external stimuli, etc. Many of these measures depend ...