Search results
Results from the WOW.Com Content Network
A predictive parser is a recursive descent parser that does not require backtracking. [3] Predictive parsing is possible only for the class of LL( k ) grammars, which are the context-free grammars for which there exists some positive integer k that allows a recursive descent parser to decide which production to use by examining only the next k ...
A formal grammar that contains left recursion cannot be parsed by a naive recursive descent parser unless they are converted to a weakly equivalent right-recursive form. . However, recent research demonstrates that it is possible to accommodate left-recursive grammars (along with all other forms of general CFGs) in a more sophisticated top-down parser by use of curta
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression.
Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing. [1] It is a type of caching , distinct from other forms of caching such as buffering and page replacement .
In computer programming, a parser combinator is a higher-order function that accepts several parsers as input and returns a new parser as its output. In this context, a parser is a function accepting strings as input and returning some structure as output, typically a parse tree or a set of indices representing locations in the string where parsing stopped successfully.
Nonetheless, if there is an indirect left recursion involved, the process of rewriting can be quite complex and challenging. If the time complexity requirements are loosened from linear to superlinear, it is possible to modify the memoization table of a Packrat parser to permit left recursion, without altering the input grammar. [5]
Backtracking is the process of traversing the tree in preorder, depth first. Any systematic rule for choosing column c in this procedure will find all solutions, but some rules work much better than others. To reduce the number of iterations, Knuth suggests that the column-choosing algorithm select a column with the smallest number of 1s in it.
If a language grammar has multiple rules that may start with the same leftmost symbols but have different endings, then that grammar can be efficiently handled by a deterministic bottom-up parse but cannot be handled top-down without guesswork and backtracking. So bottom-up parsers in practice handle a somewhat larger range of computer language ...