Search results
Results from the WOW.Com Content Network
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + 1 / 4 + 1 / 16 + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − 1 / 4 and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.
2 + (1 + 3) = (2 + 1) + 3 with segmented rods. Addition is associative, which means that when three or more numbers are added together, the order of operations does not change the result. As an example, should the expression a + b + c be defined to mean (a + b) + c or a + (b + c)? Given that addition is associative, the choice of definition is ...
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...
For some other divergent geometric series, including Grandi's series with ratio −1, and the series 1 + 2 + 4 + 8 + ⋯ with ratio 2, one can use the general solution for the sum of a geometric series with base 1 and ratio , obtaining , but this summation method fails for 1 + 1 + 1 + 1 + ⋯, producing a division by zero.