enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    In terms of levels of measurement, non-parametric methods result in ordinal data. As non-parametric methods make fewer assumptions, their applicability is much more general than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question.

  3. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.

  4. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method. It was first developed by Evelyn Fix and Joseph Hodges in 1951, [1] and later expanded by Thomas Cover. [2] Most often, it is used for classification, as a k-NN classifier, the output of which is a class membership.

  5. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  6. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.

  7. Data envelopment analysis - Wikipedia

    en.wikipedia.org/wiki/Data_envelopment_analysis

    Data envelopment analysis (DEA) is a nonparametric method in operations research and economics for the estimation of production frontiers. [1] DEA has been applied in a large range of fields including international banking, economic sustainability, police department operations, and logistical applications [2] [3] [4] Additionally, DEA has been used to assess the performance of natural language ...

  8. Regression discontinuity design - Wikipedia

    en.wikipedia.org/wiki/Regression_discontinuity...

    The major benefit of using non-parametric methods in an RDD is that they provide estimates based on data closer to the cut-off, which is intuitively appealing. This reduces some bias that can result from using data farther away from the cutoff to estimate the discontinuity at the cutoff. [4]

  9. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    Since it is a nonparametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance. If the researcher can make the assumptions of an identically shaped and scaled distribution for all groups, except for any difference in medians, then the null hypothesis is ...