Search results
Results from the WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since = (/), the case of a sine can be omitted from this definition.
If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180x/ π)°, so that, for example, sin π = sin 180° when we take x = π.
is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler . It is a special case of Euler's formula e i x = cos x + i sin x {\displaystyle e^{ix}=\cos x+i\sin x} when evaluated for x = π {\displaystyle x=\pi } .
A History of Pi; In culture; Indiana pi bill; Pi Day; Related topics; ... The derivatives of the sine and cosine function are given by sin' = cos and cos' = −sin.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The area of triangle OAD is AB/2, or sin(θ)/2. The area of triangle OCD is CD/2, or tan(θ)/2. Since triangle OAD lies completely inside the sector, which in turn lies completely inside triangle OCD, we have < < .