Ads
related to: define poset with example words worksheet 3rd grade printableteacherspayteachers.com has been visited by 100K+ users in the past month
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Resources on Sale
Search results
Results from the WOW.Com Content Network
Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...
An Eulerian poset which is a lattice is an Eulerian lattice. These objects are named after Leonhard Euler . Eulerian lattices generalize face lattices of convex polytopes and much recent research has been devoted to extending known results from polyhedral combinatorics , such as various restrictions on f -vectors of convex simplicial polytopes ...
In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...
1. A tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation < 2. A tree is a collection of finite sequences such that every prefix of a sequence in the collection also belongs to the collection. 3. A cardinal κ has the tree property if there are no κ-Aronszajn trees tuple
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.
In mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually , that is, it is an element of S {\displaystyle S} that is smaller than every other element of S . {\displaystyle S.}
Ads
related to: define poset with example words worksheet 3rd grade printableteacherspayteachers.com has been visited by 100K+ users in the past month