Search results
Results from the WOW.Com Content Network
The discriminant of a polynomial of degree n is homogeneous of degree 2n − 2 in the coefficients. This can be seen in two ways. In terms of the roots-and-leading-term formula, multiplying all the coefficients by λ does not change the roots, but multiplies the leading term by λ.
The discriminant of K can be referred to as the absolute discriminant of K to distinguish it from the relative discriminant of an extension K/L of number fields. The latter is an ideal in the ring of integers of L , and like the absolute discriminant it indicates which primes are ramified in K / L .
This "part" is the so-called complex Hessian, which is the matrix (¯),. Note that if f {\displaystyle f} is holomorphic, then its complex Hessian matrix is identically zero, so the complex Hessian is used to study smooth but not holomorphic functions, see for example Levi pseudoconvexity .
In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
An extension L that is a splitting field for a set of polynomials p(X) over K is called a normal extension of K. Given an algebraically closed field A containing K, there is a unique splitting field L of p between K and A, generated by the roots of p. If K is a subfield of the complex numbers, the existence is immediate.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.