Search results
Results from the WOW.Com Content Network
Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt and sphalerite where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction Na + (g) + Cl − (g) → NaCl (s) which amounts to −786 kJ/mol. [2]
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.
The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction. This is true because enthalpy is a state function, whose value for an overall process depends only on the initial and final states ...
There occur as many Madelung constants M i in a crystal structure as ions occupy different lattice sites. For example, for the ionic crystal NaCl, there arise two Madelung constants – one for Na and another for Cl. Since both ions, however, occupy lattice sites of the same symmetry they both are of the same magnitude and differ only by sign.
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".